Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Small Methods ; : e2301518, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517272

RESUMO

Ice-templated porous biomaterials possess transformative potential in regenerative medicine; yet, scaling up ice-templating processes for broader applications-owing to inconsistent pore formation-remains challenging. This study reports an innovative semi-solid freeze-casting technique that draws inspiration from semi-solid metal processing (SSMP) combined with ice cream-production routines. This versatile approach allows for the large-scale assembly of various materials, from polymers to inorganic particles, into isotropic 3D scaffolds featuring uniformly equiaxed pores throughout the centimeter scale. Through (cryo-)electron microscopy, X-ray tomography, and finite element modeling, the structural evolution of ice grains/pores is elucidated, demonstrating how the method increases the initial ice nucleus density by pre-fabricating a semi-frozen slurry, which facilitates a transition from columnar to equiaxed grain structures. For a practical demonstration, as-prepared scaffolds are integrated into a bilayer tissue patch using biodegradable waterborne polyurethane (WPU) for large-scale oral mucosal reconstruction in minipigs. Systematic analyses, including histology and RNA sequencing, prove that the patch modulates the healing process toward near-scarless mucosal remodeling via innate and adaptive immunomodulation and activation of pro-healing genes converging on matrix synthesis and epithelialization. This study not only advances the field of ice-templating fabrication but sets a promising precedent for scaffold-based large-scale tissue regeneration.

2.
ACS Appl Mater Interfaces ; 16(13): 15970-15980, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501704

RESUMO

Despite the rapid development of tissue adhesives, flaws including allergies, poor stability, and indiscriminate double-sided adhesive properties limit their application in the medical field. In this work, Janus polyurethane patches were spontaneously prepared by adjusting the difference in the functional group distribution between the top and bottom sides of the patch during emulsion drying. Consequently, poor adhesion was exhibited on the bottom surface, while the top surface can easily adhere to metals, polymers, glasses, and tissues. The difference in adhesive strength to pork skin between the two surfaces is more than 5 times. The quaternary ammonium salt and hydrophilic components on the surface of the polyurethane patch enable the rapid removal and absorption of water from the tissue surface to achieve wet adhesion. Animal experiments have demonstrated that this multifunctional Janus polyurethane patch can promote skin wound closure and healing of infected wounds. This facile and effective strategy to construct Janus polyurethane patch provides a promising method for the development of functional tissue-adhesives.


Assuntos
Adesivos , Adesivos Teciduais , Animais , Adesivos/farmacologia , Poliuretanos/farmacologia , Cicatrização , Pele , Adesivos Teciduais/farmacologia , Antibacterianos/farmacologia , Hidrogéis
3.
Adv Sci (Weinh) ; 11(16): e2308538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350723

RESUMO

Underwater adhesives with injectable, organic solvent-free, strong, fast adhesion, and hemostatic properties have become an urgent need in biomedical field. Herein, a novel polyurethane underwater adhesive (PUWA) inspired by mussels is developed utilizing the rapid post-cure reaction of isocyanate esterification without organic solvents. The PUWA is created through the injectable two component curing process of component A (biocompatible polyurethane prepolymer) and component B (dopamine modified lysine derivatives: chain extender-LDA and crosslinker-L3DA). The two-component adhesive cures quickly and firmly underwater, with an impressive bonding strength of 40 kPa on pork skin and excellent burst pressure of 394 mmHg. Moreover, the PUWA exhibits robust adhesion strength in hostile environments with acid, alkali and saline solutions. Combined with excellent biocompatibility and hemostatic performance, the PUWA demonstrates effectively sealing wounds and promoting healing. With the ability to bond diverse substrates rapidly and strongly, the PUWA holds significant potential for application in both biomedical and industrial fields.


Assuntos
Adesivos , Hemostáticos , Poliuretanos , Poliuretanos/química , Animais , Adesivos/química , Hemostáticos/química , Hemostáticos/farmacologia , Teste de Materiais , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Suínos , Adesivos Teciduais/química
4.
Ultrason Sonochem ; 103: 106801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364485

RESUMO

Particle engulfment plays a vital role in the application of particulate reinforced metal matrix composites fabricated by ingot metallurgy. During solidification, particles are nevertheless pushed by an advancing front. As a model system, TiB2p/Al composites were used to investigate the particle engulfment facilitated by acoustic cavitation. The implosion of bubbles drives the particles plunging towards the solid/liquid interface, which increases the engulfment probability. The secondary dendrite arms are refined from 271.2 µm to 98.0 µm as a result of the forced movements of TiB2 particles. Owing to the particle engulfment and dendrite refinement, the composite with ultrasound vibration treatment shows a more rapid work-hardening rate and higher strength.

5.
J Cancer ; 15(3): 764-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213737

RESUMO

The tyrosine-kinase receptor that is specified by the KIT locus is demarcated by KITLG. This multifaceted factor is instrumental during in-utero germ and neural cell maturation and hematopoiesis, ostensibly reflecting its role in facilitating cell migration. Concurrently, KITLG is prone to a mutation in germ cell tumors, entailing a presumed connection to tumorigenesis. Despite this, the intricacies of its function in breast cancer and the relevant mechanisms remain elusive. Multiple independent databases depict a consistently low expression of KITLG within tissues affected by triple-negative breast cancers (TNBC), a trend strongly coupled with reduced survival rates. Interestingly, non-triple-negative breast cancers exhibit a markedly high expression of KITLG compared to the norm. An initial analysis of the GEO database speculates that KITLG may serve as an oncogene suppressor in TNBC, hinting at varied roles for KITLG isoforms within this disease context. In conclusion, our preliminary analysis offers valuable insights into the role and expression pattern of KITLG in TNBC. We provide evidence supporting its consideration as a promising new prognostic marker, thereby potentially enriching therapeutic strategies for TNBC. Indeed, given the limited advances in molecularly targeted therapy for TNBC, a significant need exists for a more precise therapeutic approach and a comprehensive understanding of its inherent mechanisms of action.

6.
Updates Surg ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245892

RESUMO

Patient reported outcomes is currently considered to be an important supplement to evaluate the effectiveness of enhanced recovery after surgery (ERAS) clinical practice. The Quality of Recovery-40 Questionnaire (QoR-40) is one of the most frequently used and validation tool to assess the subjective feelings of quality of life after surgery. The present study aimed to use the QoR-40 to evaluate the effectiveness of ERAS protocols in gastric cancer from the perspective of patient-reported quality of recovery. The study was designed as a prospective, non-randomized clinical trial, conducted in a single center. Patients in our hospital who were scheduled to undergo radical surgery for gastric cancer were divided into ERAS group and control group (Contr group). The QoR-40 were administered one day before surgery (Baseline) and on postoperative day 1, 3, 6, and 30. The difference in QoR-40 scores between the ERAS and Contr groups was compared by repeated-measures ANOVA. A total of 200 patients completed the study, including 100 patients in the ERAS group and 100 patients in the Contr group. The Baseline time point QoR-40 scores of the ERAS and Contr groups were 179.68 ± 14.46 and 180.12 ± 17.12, respectively, and no significant difference was noted between the two groups (p = 0.845). The postoperative QoR-40 score of the ERAS group was significantly higher than that of the Contr group, and the difference was statistically significant (p = 0.006). This study demonstrated that, in terms of patient-reported quality of recovery, the postoperative recovery effect of ERAS protocols in gastric cancer is significantly better than that of the traditional treatment model.

7.
Int J Biol Macromol ; 258(Pt 1): 128759, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103667

RESUMO

The rational design of porous carbon materials and hydrogel electrolytes with excellent mechanical properties and low-temperature tolerance are significance for the development of flexible solid-state supercapacitors. In this study, we introduce a novel methodology for synthesizing SiC/N, S-doped porous carbon nanosheets from bamboo pulp red liquor (RL). We leverage the SiO2 and the sodium salt in RL as templates and sodium lignosulfonate as sulfur dopants for the pyrolysis process and use NH4Cl as a nitrogen dopant. This innovative approach results in a material with a remarkable specific surface area of 1659.19 m2 g-1, a specific capacitance of 308 F g-1 at a current density of 1 A g-1 and excellent stability. Additionally, we harness alkali lignin extracted from RL to enhance a poly (vinyl alcohol) (PVA) matrix, creating a gel electrolyte with low-temperature tolerance and outstanding mechanical properties. A flexible solid-state supercapacitor, which incorporates our electrodes and gel electrolyte, demonstrates high energy density (5.2 W h kg-1 at 251 W kg-1 power density). Impressively, it maintains 82 % of its capacitance over 10,000 cycles of charge and discharge. This provides a new solution for the development of flexible solid-state supercapacitors.


Assuntos
Lignina , Dióxido de Silício , Temperatura , Carbono , Eletrólitos , Sódio
8.
Regen Biomater ; 10: rbad091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965109

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide. Preclinical studies in lung cancer hold the promise of screening for effective antitumor agents, but mechanistic studies and drug discovery based on 2D cell models have a high failure rate in getting to the clinic. Thus, there is an urgent need to explore more reliable and effective in vitro lung cancer models. Here, we prepared a series of three-dimensional (3D) waterborne biodegradable polyurethane (WBPU) scaffolds as substrates to establish biomimetic tumor models in vitro. These 3D WBPU scaffolds were porous and could absorb large amounts of free water, facilitating the exchange of substances (nutrients and metabolic waste) and cell growth. The scaffolds at wet state could simulate the mechanics (elastic modulus ∼1.9 kPa) and morphology (porous structures) of lung tissue and exhibit good biocompatibility. A549 lung cancer cells showed adherent growth pattern and rapidly formed 3D spheroids on WBPU scaffolds. Our results showed that the scaffold-based 3D lung cancer model promoted the expression of anti-apoptotic and epithelial-mesenchymal transition-related genes, giving it a more moderate growth and adhesion pattern compared to 2D cells. In addition, WBPU scaffold-established 3D lung cancer model revealed a closer expression of proteins to in vivo tumor, including tumor stem cell markers, cell proliferation, apoptosis, invasion and tumor resistance proteins. Based on these features, we further demonstrated that the 3D lung cancer model established by the WBPU scaffold was very similar to the in vivo tumor in terms of both resistance and tolerance to nanoparticulate drugs. Taken together, WBPU scaffold-based lung cancer model could better mimic the growth, microenvironment and drug response of tumor in vivo. This emerging 3D culture system holds promise to shorten the formulation cycle of individualized treatments and reduce the use of animals while providing valid research data for clinical trials.

9.
JAMA Cardiol ; 8(11): 1099, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792355

RESUMO

This case report describes a diagnosis of intravenous leiomyomatosis in a woman in her 50s who presented with exertional dyspnea and syncope and had a history of hysteromyomectomy.


Assuntos
Átrios do Coração , Feminino , Humanos , Átrios do Coração/diagnóstico por imagem , Pessoa de Meia-Idade
10.
Medicine (Baltimore) ; 102(43): e35732, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904416

RESUMO

Breast cancer (BRCA) is a common malignancy worldwide that is associated with a high mortality rate. Despite recent improvements in diagnosis and treatment, there is an urgent need to investigate the processes underlying cancer progression and identify novel prognostic indicators. Anoikis, which plays a role in the development of human malignant tumors, has been gaining increasing interest from researchers. However, the potential role of anoikis-related genes (ANRGs) in the advancement of BRCA remains unknown. In this study, we aimed to assess the predictive value of ANRGs in BRCA, construct a prognostic model based on ANRGs, and explore the tumor microenvironment in different prognostic score groups. This study utilized data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to collect clinical information and RNA sequencing data from patients with BRCA. Information on ANRGs was gathered from GeneCards and Harmonizome portals. A risk score model based on ANRGs was created using least absolute shrinkage and selection operator Cox (LASSO) regression analysis. Additionally, the study explored the tumor microenvironment and enriched pathways in different risk groups. Finally, a novel ANRG-based nomogram is developed. A total of 142 differentially expressed genes associated with survival were identified, of which 5 genes were selected to create the ANRG signature. The risk score based on this signature proved to be an independent prognostic factor. Further analysis revealed that different risk subgroups exhibited variations in the tumor microenvironment and drug sensitivities. Subsequently, a nomogram was developed using risk scores and clinicopathological factors. The decision curve analysis results suggest that patients with BRCA might derive clinical treatment benefits from utilizing this prognostic model. Based on the results of this study, the ANRG signature and nomograph established can be used for clinical decision-making in patients with BRCA.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Anoikis/genética , Prognóstico , Nomogramas , Tomada de Decisão Clínica , Microambiente Tumoral/genética
11.
Polymers (Basel) ; 15(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835928

RESUMO

This paper proposes a different strategy for deriving carbon materials from biomass, abandoning traditional strong corrosive activators and using a top-down approach with a mild green enzyme targeted to degrade the pectin matrix in the inner layer of pomelo peel cotton wool, inducing a large number of nanopores on its surface. Meanwhile, the additional hydrophilic groups produced via an enzymatic treatment can be used to effectively anchor the metallic iron atoms and prepare porous carbon with uniformly dispersed Fe-Nx structures, in this case optimizing sample PPE-FeNPC-900's specific surface area by up to 1435 m2 g-1. PPE-FeNPC-900 is used as the electrode material in a 6 M KOH electrolyte; it manifests a decent specific capacitance of 400 F g-1. The assembled symmetrical supercapacitor exhibits a high energy density of 12.8 Wh kg-1 at a 300 W kg-1 power density and excellent cycle stability. As a catalyst, it also exhibits a half-wave potential of 0.850 V (vs. RHE) and a diffusion-limited current of 5.79 mA cm-2 at 0.3 V (vs. RHE). It has a higher electron transfer number and a lower hydrogen peroxide yield compared to commercial Pt/C catalysts. The green, simple, and efficient strategy designed in this study converts abundant, low-cost waste biomass into high-value multifunctional carbon materials, which are critical for achieving multifunctional applications.

13.
Colloids Surf B Biointerfaces ; 230: 113518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690226

RESUMO

Development of an inflammation modulating polypropylene (PP) mesh in pelvic floor repair is an urgent clinical need. This is because PP mesh for pelvic floor repair can cause a series of complications related to foreign body reactions (FBR) in postoperative period. Therefore, we successfully prepared PP composite mesh that can scavenge reactive oxygen species (ROS) and inhibit inflammation to moderate FBR by a simple method. First, a pregel layer was formed on PP mesh by dip coating. Among them, polyurethane with polythioketal (PTK) is an excellent ROS scavenger, and dopamine methacrylamide (DMA) improves the stability of the coating and synergistically scavenges ROS. Then, a composite mesh (optimal PU50-PP) was obtained by photopolymerization. The results showed that the polyurethane gel layer was able to scavenge more than 90% of free radicals and about 75% of intracellular ROS. In vitro, PU50-PP mesh significantly scavenged ROS and resisted macrophage adhesion. After implantation in the posterior vaginal wall of rats, PU50-PP eliminated 53% of ROS, inhibited inflammation (decreased IL-6, increased IL-10), and dramatically reduced collagen deposition by about 64%, compared to PP mesh. Thus, the composite PP mesh with ROS scavenging and anti-inflammatory properties provides a promising approach for mitigating FBR.


Assuntos
Polipropilenos , Poliuretanos , Animais , Ratos , Feminino , Polipropilenos/farmacologia , Poliuretanos/farmacologia , Espécies Reativas de Oxigênio , Telas Cirúrgicas , Diafragma da Pelve , Reação a Corpo Estranho , Inflamação/tratamento farmacológico , Anti-Inflamatórios
14.
J Mater Chem B ; 11(38): 9223-9236, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37700625

RESUMO

The guided tissue regeneration (GTR) technique with GTR membranes is an efficient method for repairing periodontal defects. Conventional periodontal membranes act as physical barriers that resist the growth of fibroblasts, epithelial cells, and connective tissue. However, they cannot facilitate the regeneration of periodontal tissue. To address this issue, the exploitation of novel GTR membranes with bioactive functions based on therapeutic requirements is critical. Herein, we exploited a biodegradable bilayer polyurethane fibrous membrane by uniaxial electrostatic spinning to construct two sides with Janus properties by integrating the bioactive molecule dopamine (DA) and antimicrobial Gemini quaternary ammonium salt (QAS). The DA-containing side, located inside the injury, can effectively promote cell adhesion and mesenchymal stem cell growth as well as support mineralization and antioxidant properties, which are beneficial for bone regeneration. The QAS-containing side, located on the outer surface of the injury, endows antibacterial properties and limits fibroblast adhesion and growth on its surface owing to its strong hydrophilicity. An in vivo study demonstrates that the Janus polyurethane fibrous membrane can significantly promote the regeneration of periodontal defects in rats. Owing to its superior mechanical properties and biocompatibility, this polyurethane fibrous membrane has potential applications in the field of periodontal regeneration.


Assuntos
Regeneração Tecidual Guiada Periodontal , Poliuretanos , Ratos , Animais , Regeneração Tecidual Guiada Periodontal/métodos , Membranas Artificiais , Periodonto , Células Epiteliais
15.
Carbohydr Polym ; 320: 121238, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659799

RESUMO

The healing of wounds in diabetic patients is a huge challenge issue in clinical medicine due to the disordered immune. Recruiting endogenous cells to play a role in the early stage and timely reducing inflammation to promote healing in the middle or late of injuring are both prerequisites for effective treatment. Here, inspired by natural extracellular matrix, three-dimensional porous polyurethane-hyaluronic acid hybrid hydrogel scaffolds (PUHA) were prepared to repair diabetic wound through activate cell immunity by moderate foreign body reaction, provide cell adhesion growth extracellular matrix of hyaluronic acid (HA) and exhibit anti-inflammatory effect of polyurethane (PU). The interaction between PU and HA alters the compact PU hydrogel into macroporous PUHA hydrogel scaffolds with super-swelling, elastic mechanical properties, and controllable degradation, which are suitable for endogenous cells infiltration, growth and immune activation. Additionally, incorporating with RGD, PUHA hydrogel scaffolds with bioactive physicochemical features can evidently reduce the inflammation and modulate the polarization of macrophage apparently both in vitro and in vivo, mainly through downregulation of cytokine-cytokine receptor interaction genes, leading to reprogramming immune-microenvironment and rapid diabetic wound healing. This method of gathering cells initially and intervening immune-microenvironment in time provides an expected way to design biomaterials for chronic wound healing.


Assuntos
Diabetes Mellitus , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Poliuretanos , Hidrogéis/farmacologia , Inflamação , Materiais Biocompatíveis
16.
J Mater Chem B ; 11(35): 8506-8518, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37603338

RESUMO

Hydrogels have been extensively used in the field of biomedical engineering. In order to achieve non-invasive and real-time visualization of the in vivo status of hydrogels, we designed a fluorescent polyurethane-oxidized dextran (PU-OD) hydrogel with good injectability and self-healing properties, which was cross-linked from a tetraphenyl ethylene (TPE)-containing fluorescent polyurethane emulsion with oxidized dextran by dynamic acylhydrazone bonds. The hydrogel can be used as a visual platform for drug delivery as well as monitoring its own degradation. The network structure of the hydrogel gave it drug-loading capability, and the acylhydrazone bond enabled its pH-responsive drug release. Meanwhile, the PU-OD hydrogel could undergo fluorescence resonance transfer with doxorubicin hydrochloride, showing its potential application in monitoring drug release. In addition, fluorometric and weighing methods were performed to monitor the degradation behavior of the hydrogels in vivo and in vitro, respectively, showing that the non-invasive fluorometric method can be consistent with the invasive weighing method. This work highlights that the introduction of aggregation-induced emission molecules into polyurethanes provides a visual platform that allows for non-invasive monitoring of the material without affecting its own function, which is convenient and less damaging to the body or animals. Consequently, it possesses excellent and promising potential in biomedical materials technologies.


Assuntos
Dextranos , Hidrogéis , Animais , Poliuretanos , Materiais Biocompatíveis , Bioengenharia , Corantes
17.
Technol Health Care ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37545271

RESUMO

BACKGROUND: Acute type B aortic dissection (ATBAD) is a life-threatening aortic disease. However, little information is available on predicting and understanding of ATBAD. OBJECTIVE: The study sought to explore the underlying mechanism of ATBAD by analyzing the morphological and hemodynamic characteristics related to aortic length. METHODS: The length and tortuosity of the segment and the whole aorta in the ATBAD group (n= 163) and control group (n= 120) were measured. A fixed anatomic landmark from the distal of left subclavian artery (LSA) to the superior border of sixth thoracic vertebra was proposed as the proximal descending thoracic aorta (PDTA), and the dimensionless parameter, length ratio, was introduced to eliminate the individual differences. The significant morphological parameters were filtrated and the associations between parameters were investigated using statistical approaches. Furthermore, how aortic morphology influenced ATBAD was explored based on idealized aortic models and hemodynamic-related metrics. RESULTS: The PDTA length was significantly increased in the ATBAD group compared with the control group and had a strong positive correlation with the whole aortic length (r= 0.89). The length ratio (LR2) and tortuosity (T2) of PDTA in the ATBAD group were significantly increased (0.15 ± 0.02 vs 0.12 ± 0.02 and 1.73 ± 0.48 vs 1.50 ± 0.36; P< 0.001), and LR2 was positive correlation with T2 (r= 0.73). In receiver-operating curve analysis, the area under the curve was 0.835 for LR2 and 0.641 for T2. Low and oscillatory shear (LOS) was positive correlation with LR2, and the elevated LOS occurred in the distal of LSA. CONCLUSION: Elongation of PDTA is associated with ATBAD, and the length ratio is a novel predictor. Elongated PDTA induced more aggressive hemodynamic forces, and high LOS regions may correspond to the entry tear location. The synergy of the morphological variation and aggressive hemodynamics creates contributory conditions for ATBAD.

18.
J Mater Chem B ; 11(27): 6308-6318, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37326438

RESUMO

Long-gap peripheral nerve injury remains a major challenge in regenerative medicine and results in permanent sensory and motor dysfunction. Nerve guidance scaffolds (NGSs) are known as a promising alternative to autologous nerve grafting. The latter, the current "gold standard" in clinical practice, is frequently constrained by the limited availability of sources and the inevitable damage to the donor area. Given the electrophysiological properties of nerves, electroactive biomaterials are being intensively investigated in nerve tissue engineering. In this study, we engineered a conductive NGS compounded of biodegradable waterborne polyurethane (WPU) and polydopamine-reduced graphene oxide (pGO) for repairing impaired peripheral nerves. The incorporation of pGO at the optimal concentration (3 wt%) promoted in vitro spreading of Schwann cells (SCs) with high expression of the proliferation marker S100 protein. In an in vivo study of sciatic nerve transection injury, WPU/pGO NGSs were found to regulate the immune microenvironment by activating macrophage M2 polarization and upregulate growth-associated protein 43 (GAP43) to facilitate axonal elongation. Histological and motor function analysis demonstrated that WPU/pGO NGSs had a neuroprosthetic effect close to that of an autograft, which significantly promoted the regeneration of myelinated axons, reduced gastrocnemius atrophy, and enhanced hindlimb motor function. These findings together suggested that electroactive WPU/pGO NGSs may represent a safe and effective strategy to manage large nerve defects.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Poliuretanos , Cones de Crescimento/metabolismo , Cones de Crescimento/patologia , Nervos Periféricos/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico
19.
Int Wound J ; 20(8): 3191-3203, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249237

RESUMO

Ferroptosis is a novel form of cell death that plays a key role in several diseases, including inflammation and tumours; however, the role of ferroptosis-related genes in diabetic foot remains unclear. Herein, diabetic foot-related genes were downloaded from the Gene Expression Omnibus and the ferroptosis database (FerrDb). The least absolute shrinkage and selection operator regression algorithm was used to construct a related risk model, and differentially expressed genes were analysed through immune infiltration. Finally, we identified relevant core genes through a protein-protein interaction network, subsequently verified using immunohistochemistry. Comprehensive analysis showed 198 genes that were differentially expressed during ferroptosis. Based on functional enrichment analysis, these genes were primarily involved in cell response, chemical stimulation, and autophagy. Using the CIBERSORT algorithm, we calculated the immune infiltration of 22 different types of immune cells in diabetic foot and normal tissues. The protein-protein interaction network identified the hub gene TP53, and according to immunohistochemistry, the expression of TP53 was high in diabetic foot tissues but low in normal tissues. Accordingly, we identified the ferroptosis-related gene TP53 in the diabetic foot, which may play a key role in the pathogenesis of diabetic foot and could be used as a potential biomarker.


Assuntos
Diabetes Mellitus , Pé Diabético , Ferroptose , Humanos , Pé Diabético/genética , Ferroptose/genética , Algoritmos , Autofagia , Biologia Computacional
20.
Int J Dev Biol ; 67(1): 9-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078361

RESUMO

Acute myocardial infarction (AMI) is myocardial necrosis caused by the complete or partial obstruction of a coronary artery. Circular RNAs (circRNAs) have been proven as regulators in the progression of various human diseases, including AMI. However, the role of novel circ-JA760602 in AMI remains unknown. Here, we investigated the role of circ-JA760602 in modulating the apoptosis of hypoxia-induced AMI cells using the AC16 cardiomyocyte in vitro cell model. The expression of circ-JA760602 in AC16 cardiomyocytes subjected to hypoxia was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was measured by cell counting kit-8 (CCK-8) assay. Apoptosis of cardiomyocytes was evaluated by TUNEL assay and flow cytometry analysis. The cellular location of circ-JA760602 was identified through fluorescence in situ hybridization (FISH) assay and subcellular fractionation assay. The downstream molecular mechanisms of circ-JA760602 were demonstrated by luciferase reporter assay, RNA binding protein immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay. Rescue assays were performed to demonstrate the effects of BCL2 knockdown on circ-JA760602 silencing-mediated cardiomyocyte apoptosis. Circ-JA760602 expression was elevated after hypoxia treatment. Knockdown of circ-JA760602 enhanced viability and curbed apoptosis of hypoxia-treated cardiomyocytes. EGR1 and E2F1 could activate BCL2 transcription. Cytoplasmic circ-JA760602 bound with EGR1 and E2F1 to thus inhibit their nuclear translocation. BCL2 knockdown reversed the effects of circ-JA760602 silencing on the apoptosis of hypoxia-treated AC16 cells. Circ-JA760602 promotes hypoxia-induced apoptosis of cardiomyocytes by binding with EGR1 and E2F1 to inhibit the transcriptional activation of BCL2.


Assuntos
MicroRNAs , Miócitos Cardíacos , Humanos , Apoptose/genética , Proliferação de Células , Hipóxia , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Circular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...